数中毒剂量(TD50)或半数致死浓度(LC50)表示。
13、半数有效量(ED50):是能引起半数阳性反应(质反应)或半数最大效应(量反应)的浓度或剂量,用半数有效浓度(EC50)表示。
14、治疗指数:半数致死量和半数有效量的比值 (LD50/ED50),比值越大相对安全性越大,反之越小。该指标的药物效应及毒性反应性质不明确,这一安全指标并不可靠。
15、安全范围:是ED95~TD5之间的距离,其值越大越安全。药物的安全性与药物剂量(或浓度)有关。
16、可靠安全系数 (CSF):CSF=LD1/ED99, 比值大于1,安全系数较大;比值小于1,安全系数小。
第二节 药物作用机制
药物效应多种多样,是不同药物分子与机体不同靶细胞间相互作用的结果。药物作用的性质首先取决于药物的化学结构,包括基本骨架、活性基团、侧链长短及立体构形等因素。这些构效关系是药物化学研究的主要问题,但它有助于加强医生对药物作用的理解。药理效应是机体细胞原有功能水平的改变,从药理学角度来说,药物作用机制要从细胞功能方面去探索。
一、非特异性药物作用机制: 与药物的理化性质有关。
1、渗透压作用: 如甘露醇的脱水作用。
2、脂溶作用: 如全身麻醉药对中枢神经系统的麻醉作用。
3、膜稳定作用:阻止动作电位的产生及传导,如局部麻醉药,某些抗心律失常药等。
4、影响PH: 如抗酸药中和胃酸。
5、络合作用: 如二巯基丙醇络合汞、砷等重金属离子而解毒。
二、特异性药物作用机制: (与药物的化学结构有关)
1、干扰或参与代谢过程:
①对酶的影响,多数药物能抑制酶的活性,如新斯的明竞争性抑制胆碱酯酶,奥美拉唑不可逆性抑制胃粘膜H+-K+ATP酶(抑制胃酸分泌),而有些药本身就是酶,如胃蛋白酶。
②参与或干扰细胞代谢,伪品掺入也称抗代谢药,如5-氟尿嘧啶结构与尿嘧啶相似,掺入癌细胞DNA及RNA中干扰蛋白合成而发挥抗癌作用。
③影响核酸代谢,许多抗癌药是通过干扰癌细胞DNA或RNA代谢过程而发挥疗效的。许多抗生素(包括喹诺酮类)也是作用于细菌核酸代谢而发挥抑菌或杀菌效应的。
2、影响生物膜的功能: 如作用于细胞膜的离子通道的抗心律失常药通过影响Na+、Ca2+或K+的跨膜转运而发挥作用。
3、影响体内活性物质: 乙酰水扬酸通过抑制前列腺素合成而发挥解热、镇痛和抗炎作用。
4、影响递质释放或激素分泌:如麻黄碱促进末梢释放去甲肾上腺素(NA)。
5、影响生理物质转运 在体内主动转运需要载体参与,干扰这一环节可药理效应。如利尿药抑制肾小管Na+-K+、Na+-H+交换而发挥排钠利尿作用。
6、影响免疫机制 除免疫血清及疫苗外,免疫增强药及免疫抑制药通过影响免疫机制发挥疗效。
5、影响受体功能:
掌握受体的概念和特征。
熟悉受体激动药、拮抗药、竞争性拮抗药和非竞争性拮抗药的概念。
了解受体的类型及药物与受体相互作用的信号转导。
(1)受体概念:受体为糖蛋白或脂蛋白,存在于细胞膜、细胞浆或细胞核内,能识别周围环境中某种微量化学物质,与药物相结合并能传递信息和引起效应的细胞成分。
配体:能与受体特异性结合的物质。受体仅是一个“感觉器”,对相应配体有极高的识别能力。受体-配体是生命活动中的一种偶合,受体都有其内源性配体,如神经递质、激素、自身活性物等。
(2)药物与受体结合作用的特点:
①特异性与结构专一性;
②饱和性与立体选择性;
③可逆性与内源性配体;
④识别力与高度敏感性。
(3)激动药与拮抗药
①激动药:能激活受体的配体,与受体有较强的亲和力和较强的内在活性(效应力)。
②部分激动药:与受体有较强的亲和力和较弱的内在活性。部分激动药具有激动药与拮抗药两重特性。
③拮抗药:能阻断其活性的配体,与受体有较强的亲和力,但无内在活性。
竞争性拮抗药:能与激动药互相竞争与受体可逆结合。
非竞争性拮抗药:能与激动药互相竞争与受体不可逆结合。
(4)受体调节与药物作用关系:
受体可经常代谢转换处于动态平衡状态,其数量,亲和力及效应力受生理及药理因素的影响。
①耐受性、不应性 、快速耐受性:连续用药后药效递减是常见的现象。由于受体原因而产生的耐受性称为受体脱敏。
②受体向下调节:在激动药浓度过高或长期激动受体时,受体数目减少。与耐受性有关。
③受体向上调节:激动药浓度低于正常时,受体数目增加。与长期应用拮抗剂后敏感性增加有关,如突然停药时会出现反跳反应。
(5)注意点:
1)药物与受体结合产生效应不仅要有亲和力,还与内在活性有关。
2)两药亲和力相等时其效应强度取决于内在活性强弱,当内在活性相等时则取决于亲和力大小。3)结合体:某些细胞蛋白组分可与配体结合,但没有触发效应的能力。如酶、载体、离子通道及核酸也可与药物直接作用,但这些物质本身具有效应力,故严格地说不应被认为是受体。
4)储备受体:剩余下未结合的受体,拮抗药必须在完全占领储备受体后才能发挥其拮抗效应。这对理解拮抗药作用机制有重要意义。
5)超拮抗药:个别药物(如苯二氮卓类)对静息状态受体亲和力大于活动状态受体,结合后引起与激动药相反的效应。
二、受体类型
根据受体蛋白结构、信息传导过程、效应性质、受体位置等特点,受体大致可分为下列4类:
1. 含离子通道的受体 又称直接配体门控通道型受体,存在于快速反应细胞的膜上,受体激动时离子通道开放使细胞膜去极化或超极化,引起兴奋或抑制效应。如乙酰胆碱、脑中γ氨基丁酸(GABA),甘氨酸、谷氨酸、天门冬氨酸受体都属于这一类型。
2.G-蛋白偶联受体 肾上腺素、多巴胺、5-羟色胺、M-乙酰胆碱、阿片类、嘌呤类、前列腺素及一些多肽激素等的受体,神经递质及激素的受体需要G-蛋白介导其细胞作用,G-蛋白有两类,其一为兴奋性G-蛋白(GS),可激活腺苷酸环化酶(AC);另一为抑制性G-蛋白(Gi),抑制AC.
3.具有酪氨酸激酶活性的受体 胰岛素、胰岛素样生长因子、上皮生长因子、血小板生长因子及某些淋巴因子的受体属于这一类型。
4.细胞内受体 甾体激素受体和甲状腺素受体,触发的细胞效应很慢。
三、第二信使
受体在识别相应配体并与之结合后需要细胞内第二信使将获得信息增强、分化、整合并传递给效应机制才能发挥其特定的生理功能或药理效应。
1.G-蛋白 G蛋白是一类存在于细胞膜内侧的调节蛋白,静息状态时与GDP结合。GS激活腺苷酸环化酶(AC),使cAMP增加。Gi抑制AC,使cAMP减少,G-蛋白还激活磷脂酶C(PLC),调节Ca2+、K+等离子通道。对鸟苷酸环化酶也有激活作用,作用非常广泛,介导多种效应。近来发现G-蛋白还介导激活磷脂酶A2(PLA2)而产生花生四烯酸(AA),后者是各种前列腺素及白三烯的前体。
2. 环磷腺苷(cAMP) β受体、D1受体、H2受体等激动药通过GS作用使AC活化,ATP水解而使细胞内cAMP增加。α受体、D2受体、MACh受体、阿片受体等激动药通过Gi作用抑制AC,细胞内cAMP减少。cAMP受磷酸二酯酶(PDE)水解为5‘AMP后灭活。
3.环磷鸟苷(cGMP) cGMP作用与cAMP相反,可独立作用而不受cGMP制约。cGMP可激活蛋白酶G而引起各种效应。
4.肌醇磷脂 α、H1、5-HT2、M1、M3等受体激动药与其受体结合后通过G-蛋白介导激活磷脂酶C(PLC)PLC使4,5-二磷酸肌醇磷脂(PIP2)水解为二酰甘油(DAG)及1,4,5-三磷酸肌醇(IP3)。
5.钙离子 细胞内微量Ca2+对细胞功能有着重要的调节作用,如肌肉收缩、腺体分泌、白细胞及血小板活化等。细胞内Ca2+可从细胞外经细胞膜上的钙离子通道流入,也可从细胞内肌浆网等钙池释放,两种途径互相促进。
第三章 药动学
药理学考前辅导要点是我去年的学习笔记,也是今年的我科执业药师考试药理学考前辅导讲稿,肯定有错,请指正!!反冲力2003年1月费时整理,引用者请注明出处。
掌握药物的吸收、分布及其影响因素,P450酶系及其抑制剂和诱导剂,药物排泄途径及其影响肾排泄的因素,血浆蛋白结合率和肝肠循环的概念。
药物代谢动力学,简称为药动学,研究药物体内过程及体内药物浓度随时间变化的规律。药物在体内分布达到平衡后药理效应强弱与药物血浆浓度成比例。医生可用药动学规律计算药物剂量以达到所需的血药浓度并掌握药效的强弱久暂。比单凭经验处方取得较好的疗效。
第一节 药物体内过程
一、药物的跨膜转运
药物在体内的过程:吸收、分布、生物转化、排泄,需进行跨膜转运的过程是吸收、分布、排泄。
1、被动转运 (顺梯度转运): 药物依赖于膜两侧的浓度差,从高浓度的一侧向低浓度的一侧扩散转运的过程。多数药物属于被动转运。
(1)特点:不需要载体,不消耗能量,无饱和现象和竞争性抑制。
(2)影响扩散速度的因素:
①膜两侧的药物浓度差。
②药物理化性质:分子量小、脂溶性大、极性小、非解离型的药易通过生物膜转运,反之难跨膜转运。
2、主动转运:是一种逆浓度(或电位)差的转运。
特点:需要载体,消耗能量,有饱和现象和竞争性抑制。
二、吸 收
药物的吸收是指药物进入血液循环的过程。静脉注射无吸收过程。吸收速度与程度主要取决于药物的理化性质、剂型、剂量和给药途径。
(一)吸收方式
1.多数药按简单扩散进入(吸收)。
(1) 影响扩散速度的因素:1)膜的性质,面积及膜两侧的浓度梯度,2)药物的性质,分子量小的(200D以下),脂溶性大的(油水分布系数大的),极性小的(不易离子化的)药较易通过。
(2) 吸收分布排泄的一个可变因素,与环境的酸碱度有关。
(3)离子障现象:非离子型药可自由穿透,而离子型药被限制在膜的一侧。离子障与吸收有关,可以理解为“酸酸易吸收,酸碱难吸收”。如弱酸性药在胃液中非离子型多,在胃中即可被吸收。弱碱性 上一页 [1] [2] [3] [4] 下一页
|